
Kevin Dome

Kevin Dome

- CO₂ in middle **Duperow**
- Two "gold standard" seals
 - Upper Duperow ~200' tight carbonates and anhydites
 - Caprock~ 175' **Anhydrite Caprock**

Shale & Silty

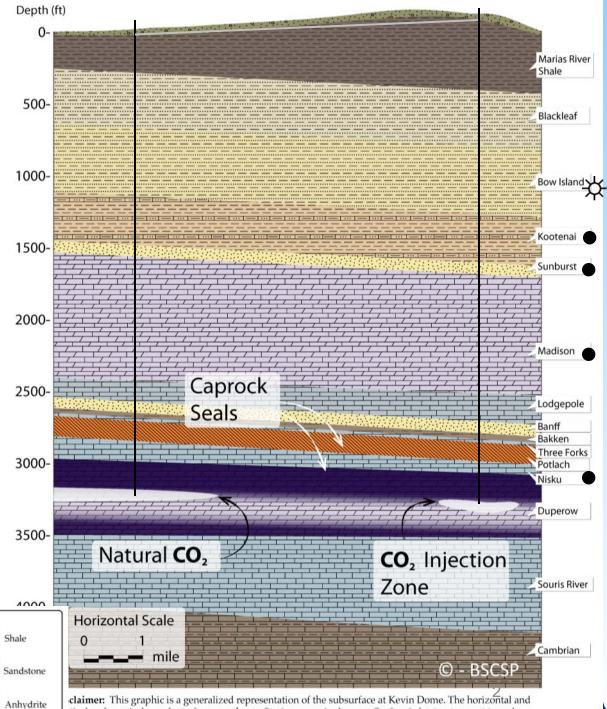
Limestone

Siltstone or

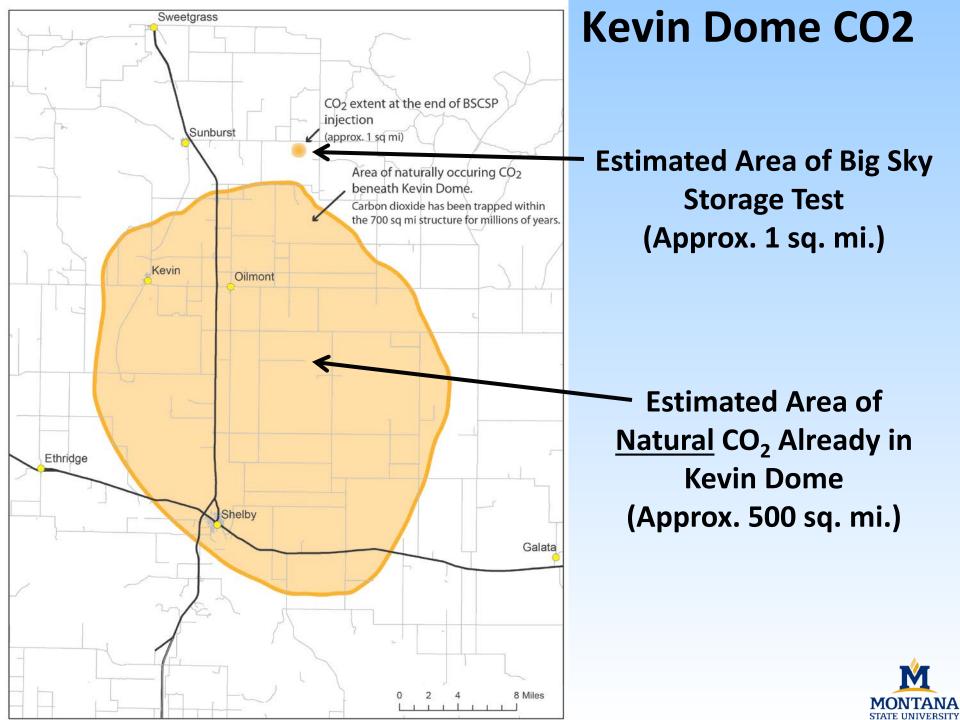
nterbedded

Limestone & Shale

Shaly Silt


Multiple secondary, lacksquaretertiary Seals

imestone


Dolomitic

imestone

Dolomite

claimer: This graphic is a generalized representation of the subsurface at Kevin Dome. The horizontal and tical scale are independent of one another to fit view on a single page. Surface infrastructure not to scale.

Site Characteristics – Scientific Opportunities

Since nature has stored CO_2 at this site for 50 million years, we viewed this is a very safe place to develop a CO_2 storage field lab that could yield unique and valuable information to science, federal agencies and industry.

- Test monitoring technologies
- Test mitigation methods
- Test stacked storage
- Test detection limits

Site Characteristics – Scientific Opportunities

- Natural accumulation vs. new injection
 - Allows investigation of geophysical detection of CO_2 spatially as well as temporally
 - May help understand seismic response changes function of fluid fill vs. function of geochemically alteration of rock (9C)
- Great opportunity to study mitigation
 - Use injector (and perhaps monitoring wells) to withdraw injected CO_2 and place back in the gas cap

Underground Source of Drinking Water (USDW) - Definition

- (40 CFR) Section 144.3 is an aquifer or part of an aquifer which:
 - a. supplies any public water system, or contains a sufficient quantity of ground water to supply a public water system and currently supplies drinking water for human consumption or contains fewer than 10,000 milligrams/liter of Total **Dissolved Solids (TDS)**; and

b. is not an exempted aquifer.

- An "exempted aquifer" is part or but which has been exempted
 - 1. It is mineral, hydrocarb permit applicant as p minerals or hydroca commercially produ
 - 2. It is situated at a de purposes economic
 - 3. It is so contaminated that water fit for hum
 - 4. It is located over a Class or

5. The total dissolved solids con-

application h ring their qu bcation kes reco echnologi octica would be ecc

ining area e

mption;

dermal ener

which meets the definition of a USDW ia found in 40 CFR Section 146.4:

> ng, or can be demonstrated by a II or III operation to contain nd location are expected to be

> > water for drinking water

ologically impractical to render

absidence or catastrophic collapse;

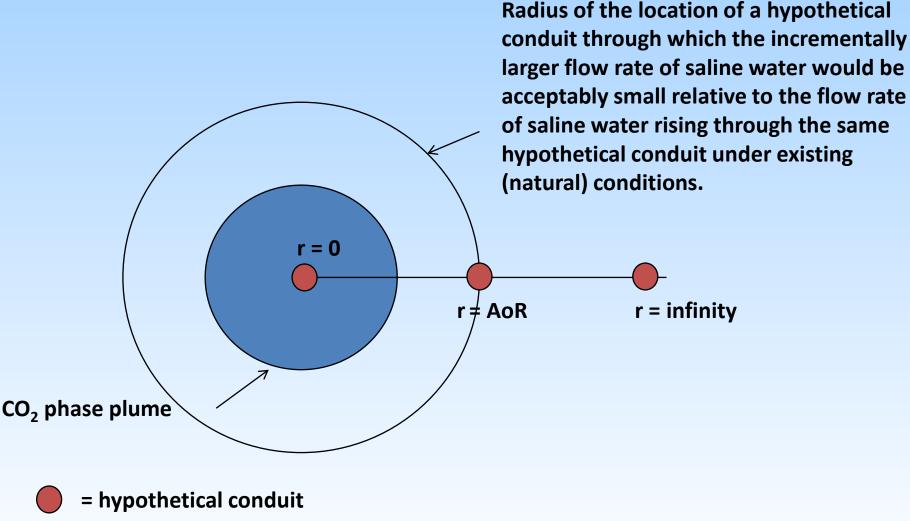
ater is more than 3,000 and less than O milligrams/liter and it is not reasonably expected to supply a public water system

Original Area of Review Definition

Area where pressure can lift brine from storage reservoir to lowermost USDW through an open conduit

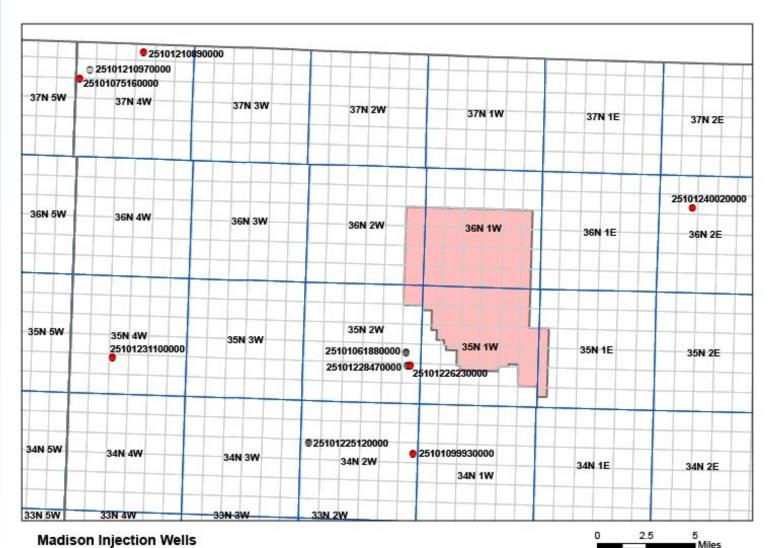
Madison is under-pressurized in our region – leads to infinite area of review

	Storage Reser	USDW					
Thickness	50 m	50 m		Injection well		Leaky well	
Average Initial Head	1036.4 (m)	817.35 (m)	[ſ			
Density*	1090.55 (kg/m³)	1002.77(kg/m ³)			USDW	$u_{2}(t)$	
Viscosity*	9.30×10 ⁻⁴ (Pa.s)	9.26×10 ⁻⁴ (Pa.s)			Radius		
Salt mass fraction	0.13	0.0035					
Temperature Brine compressibility*	34.7 (Celsius) 3.45×10 ⁻¹⁰ (Pa ⁻¹)	23.3 (Celsius) 4.46×10 ⁻¹⁰ (Pa ⁻¹)					
Pore compressibility	1.63×10 ⁻⁹ (Pa ⁻¹)	1.63×10 ⁻⁹ (Pa ⁻¹)			Impervious		
Permeability	30, 50, 80 mD	30, 50, 80 mD					
Porosity	0.1	0.1					
Specific Storativity	2.11×10 ⁻⁶ (1/m)	2.04×10⁻⁶ (1/m)					
Injection well radius	0.15 m	0.15 m					
Injection rate	835.32 m³/d	0					
Leaky well radius	0.15 m	0.15 m			$Q_1(t)$	$u_1(t)$	
Leaky well	10 ⁻⁷ m ²	10 ⁻⁷ m ²		`			
permeability				E	<u>j</u>		<u>j</u>

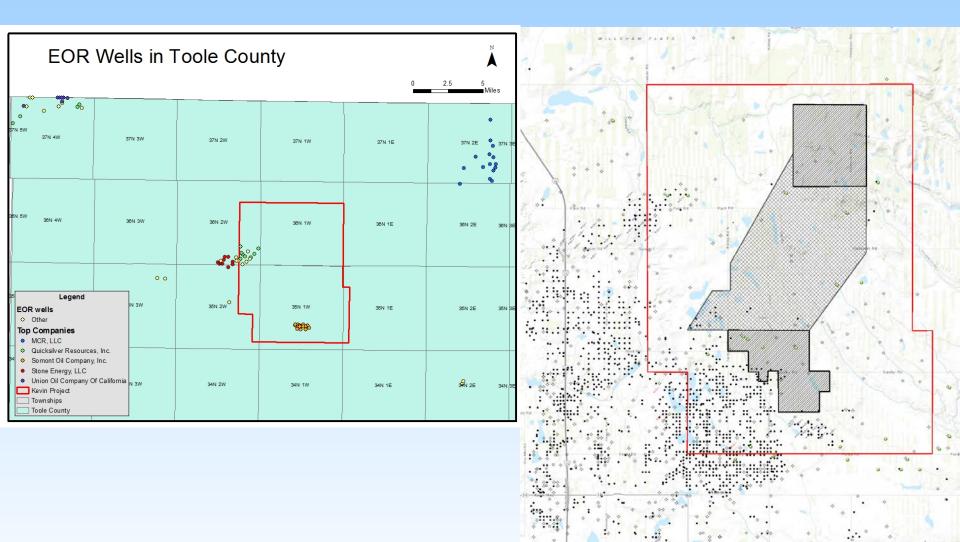

• CO₂ injection rate is 7.921 kg/s for 4 years.

- Assuming the density of CO₂ is 819.3 kg/m³, the equivalent single –phase injection rate is equal to 835.32 m³/d.
- The thickness of the formations between the storage reservoir and the USDW is 172.8 THE UNIVERSITY

Guidance Document Area of Review


Big

SKY CARB


Wastewater Disposal in USDW?

- Active Injection
- P&A Approved
- Temporarily Abandoned

EOR in USDW?

Gip Black Rd

Compliance or Science?

- Project was not designed with Class VI compliance in mind
- Class VI compliance is significantly more expensive
- Those costs cannot come out of infrastructure or operations because then there would be no project
- Those costs directly impact the amount of science performed reducing information useful to agencies, industry, etc.
 - Injector requires larger diameter through Madison (2100'). Lost circulation risk.
 - Madison Monitoring Well
 - PISC Larger surveys later will cost as much as several smaller surveys earlier
 - Mitigation test PISC implied liability means we can't do this

Why is Class VI so much more expensive?

Why is Class VI so much more expensive?

- Injector requires larger diameter through Madison (2100'). Lost circulation risk.
- Madison Monitoring Well

- Expense of 1-2 deep observation wells
- PISC Larger surveys later will cost as much as several smaller surveys earlier
- Mitigation test PISC implied liability means we can't do this
- These are examples, not underlying reason

Why is Class VI so much more expensive?

- EPA documentation indicates concern about risk related to total quantity of injectate (Preamble to Rule, Factsheet, Multiple presentations).
- This makes sense. A 500 MW power –plant could inject ~4MT
 / yr for 50 years 200 MT total. And there could be many.
 This is a different scale than current UIC activities.
- But current experimental demos are ~250 kT over 4 yrs, 6.25% of the injection rate and 2% total quantity of a commercial project.
- Can we do something to confirm EPAs intuition that risk scales with injectate quantity? Can EPA issue guidance reducing stringency so demos can yield more useful information?

Everything we can do to SAFELY reduce the 4-dimensional extent of compliance monitoring / actions will recoup some of the science

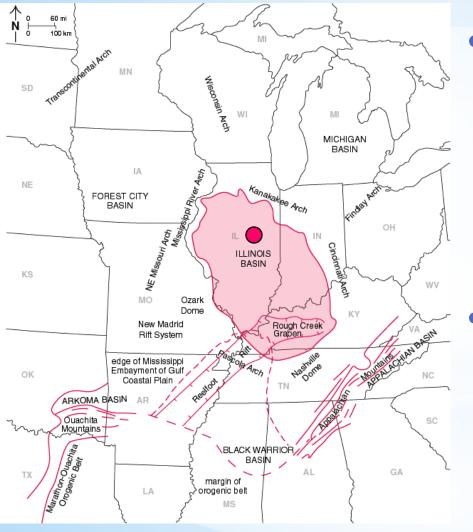
Challenges

- PISC
 - Default period has private sector partner & university uneasy
 - May have to incur significant cost to have period reduced via directors discretion
 - Uncertainty in this process is an issue
- Financial Assurance
 - Affordable assurance may not be long enough term

Illinois Basin – Decatur Project CCS Regulatory Lessons Learned

Presented by

Dr. Sallie E. Greenberg


Assistant Director, Advanced Energy Technology Initiative - Illinois State Geological Survey

2013 Carbon Storage R&D Project Review Meeting 20-22 August, Pittsburgh, PA

Illinois Basin – Decatur Project

Collaboration:

- Midwest Geological Sequestration Consortium,
- Archer Daniels Midland Company (ADM),
- Schlumberger Carbon Services,
- Additional subcontractors

Objective:

- Inject 1 million metric tons of anthropogenic carbon dioxide at a depth of ~2,130 m
- Demonstrate geological carbon sequestration in a saline reservoir at a site in Decatur, IL

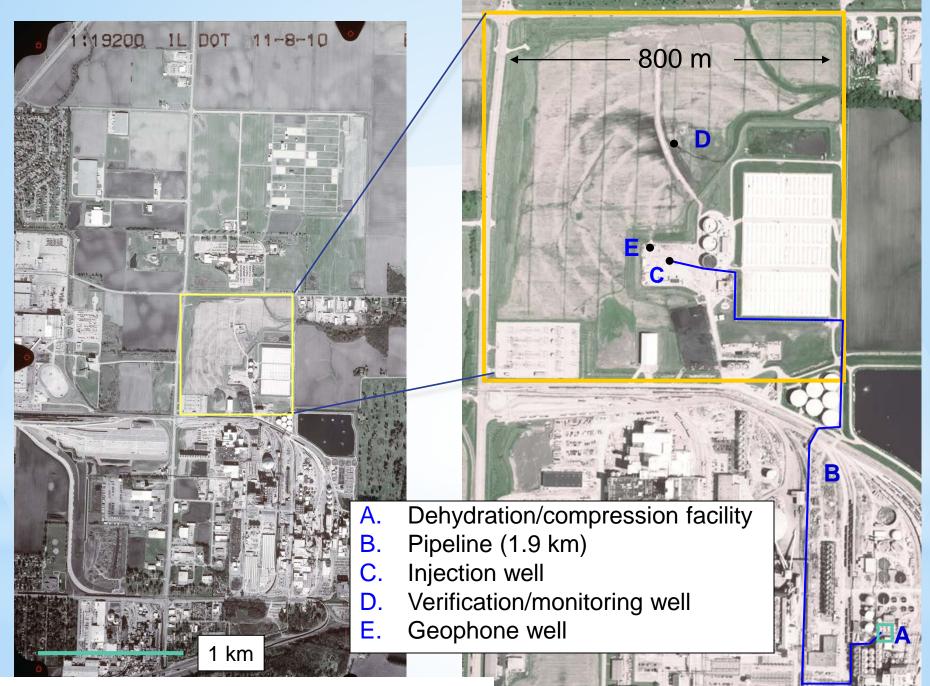
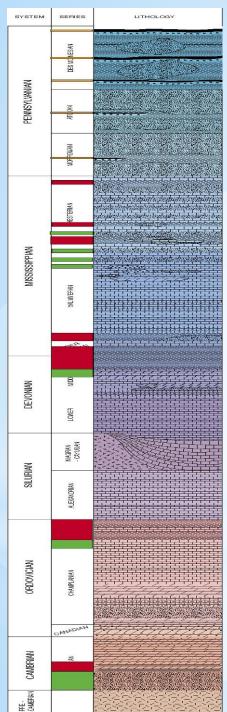



photo by Illinois Dept. of Transportation, 8 November 2010

Pennsylvanian coal seams

St. Peter Sandstone

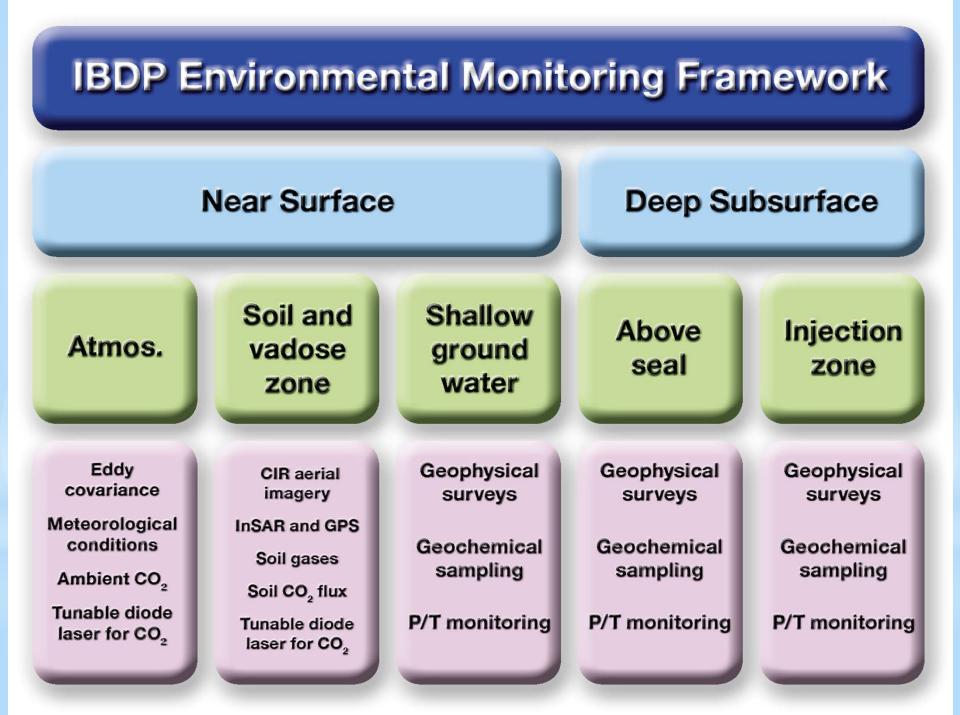
Eau Claire Shale – Primary Seal Mt. Simon Sandstone - Reservoir

Illinois Basin Stratigraphic Column

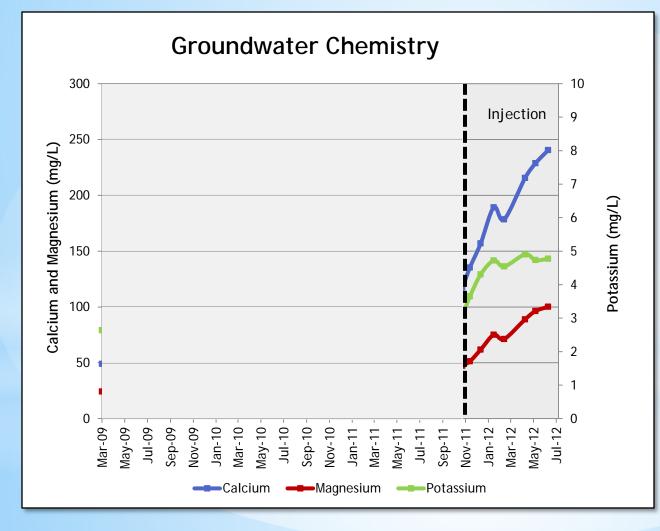
fluvial sandstones

6974

Permitting Context


- Underground Injection Control (UIC) program under Safe Drinking Water Act – subsurface injection
- IBDP permitted as Class I non hazardous by Illinois
- Submitted Jan 2008, permission to inject October 2011
 - Application, hearing, minor modification, major modification, completion reports, permission to inject
- Class VI federal primacy
 - December 2010
 - Reapply
 - Awaiting response
 - Monitoring implications

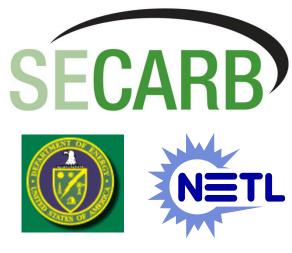
IBDP Regulatory Lessons


- Regulations will drive monitoring activities
 - Ongoing and evolving
 - Research has not yet defined monitoring requirements
 - Researchers should consider obligation to evaluate commercial needs
- Environmental baseline essential regardless of regulatory requirements
 - Risk mitigation
 - Support CCS primary deployment goals
- Public engagement guidelines should be exceeded
 - Proactive approach increases transparency
 - Move beyond formal engagement requirements
- Provide balance of information detail important, but can distract

IBDP Regulatory Lessons

- Modeling
 - Generation
 - Verification
- Proactively educate regulators
 - Engage early
 - Familiarize yourself with regulatory time clock
- Start early
- Seek out examples (publicly available)
- Remain flexible

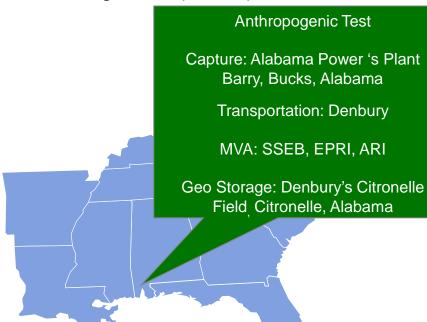
Baseline Is Important

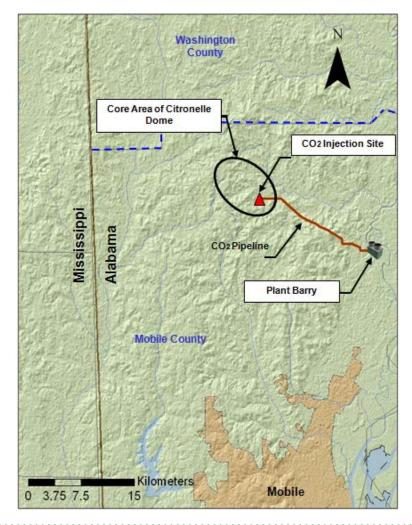

- Increases in Nov 2009 and Nov 2011, but not Nov 2010
- One year of preinjection data not enough to show seasonal cycle

Acknowledgments

- The Midwest Geological Sequestration Consortium is funded by:
 - U.S. Department of Energy (DOE) through the National Energy Technology Laboratory (NETL) via the Regional Carbon Sequestration Partnership Program (contract number DE-FC26-05NT42588)
 - And by the State of Illinois via a cost share agreement with the Illinois Department of Commerce and Economic Opportunity, Office of Coal Development through the Illinois Clean Coal Institute.

Southeast Regional Carbon Sequestration Partnership Citronelle Project: Experiences with Permitting and Regulations on CCS

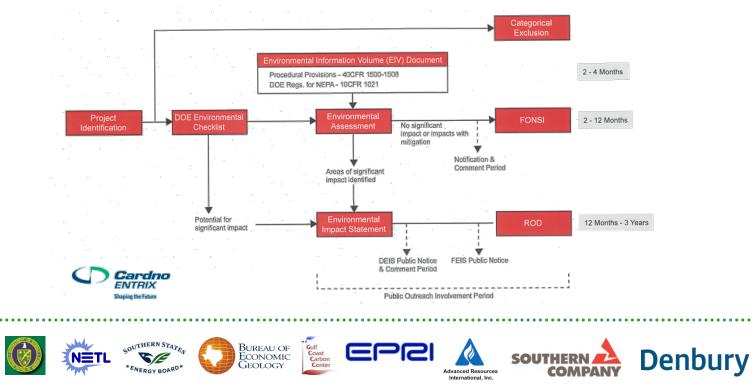

Carbon Storage R&D Project Review Meeting August 21, 2013



Kimberly Sams Assistant Director, Geoscience Programs Southern States Energy Board

Permitting Outline & Project Location

- National Environmental Protection Act (NEPA)
- Alabama Historical Commission
- U.S. Fish and Wildlife
- U.S. Army Corps of Engineers
- Alabama Department of Environmental Management (ADEM)



National Environmental Protection Act

Environmental Impacts

st Regional Carbo

- Categorical Exclusion: All locations performing office work, planning, coordination, etc.
- Environmental Assessment (EA)
 - Environmental Information Volume and Supplements for Pipeline and Electric Transmission Line
 - Finding of No Significant Impact (FONSI) issued by NETL on March 18, 2011

29

Alabama Historical Commission

State Cultural or Archaeological Assets

- 2 cultural resources assessments
- 4 archaeological sites discovered in the Transmission Line survey, though not eligible under the National Register of Historic Places – no further investigations warranted
- No cultural resources were discovered – no further investigations warranted
- Following review of EA, "...agree with the EA as it pertains to no effect to National Register eligible cultural resources" by State Historic Preservation Officer, April 2011

Denbury

U.S. Fish and Wildlife

Threatened and Endangered Species

- Endangered Gopher Tortoise habitat
- 110 burrows in/adjacent to construction area
- Directional drilling of pipeline
- Marked burrows at well pad site

31

U.S. Army Corps of Engineers

Wetlands

- Pipeline route
 - 12 miles
 - Directional drilled 18 sections of the pipeline, 30-60 ft deep, under wetlands, roads, utilities, railroad tracks, and tortoise colonies
 - Surface re-vegetation and erosion control
- Well pad construction
 - Wetlands impacts mitigated after drilling completed

AL Dept. of Environmental Management

Underground Sources of Drinking Water

- Class V Experimental UIC Permit issued by the Alabama Department of Environmental Management (ADEM) on November 22, 2011
 - U.S. Environmental Protection Agency Headquarters Involvement
 - Provided comments to ADEM regarding permit requirements
 - Many Class VI standards applied to the Class V Permit (see below)
- Permission to Inject issued by ADEM on August 8, 2012
- Injection began in August 20, 2012

Injection Area of Review (AOR) determined by annual modeling Periodic AOR updates based on monitoring and modeling results Extensive deep, shallow and surface CO₂ monitoring Monthly reporting of injection pressures, annular pressures and injection stream composition Injection stream monitoring Periodically updated Corrective Action Plan Site closure based on USDW non-endangerment demonstration (5-yr renewal) Pressurized annulus throughout injection (+/- 200 psig) Emergency and remedial response plan Post-injection site care plan

33